Investigating the effect of graphene oxide on scaling in thin-film composite polyamide reverse osmosis membranes

Ali Ansari, Bo Cao, Xinyi Yi, Yandi Hu, and Debora Rodrigues

Civil and Environmental Engineering, University of Houston, Houston, TX, USA

Sixth Sustainable Nanotechnology Organization Conference November 5-7, 2017

HOUSTON

Water crisis

- Rapid population growth
- Water pollution from agricultural residues, sewage, and industrial waste
- Climate change
- > Economy
- Water management

Solutions

➢ Water reuse

Seawater desalination

Membrane technologies

- Micro filtration (MF)
- Ultra filtration (UF)
- > Nano filtration (NF)
- Reverse osmosis (RO)
- Forward osmosis (FO)
- Membrane distillation (MD)
- Electrodialysis (ED)

Reverse osmosis membrane

- Seawater desalination
- Drinking water production
- Brackish water treatment
- Wastewater treatment

High water permeability

High salt rejection

Fouling in RO membrane

Accumulation of undesired deposits on the membrane surface or inside the membrane pores

- Increase salt passage through the membrane
- Creates hydraulic resistance of water flow through the membrane
- Induce potential for accelerated scale formation

Fouling in RO membrane

In terms of place:

Surface fouling

Internal fouling

In terms of type:

- Biofouling
 - Adhesion and proliferation of microorganisms
- Organic fouling
 - Deposition of organic matters
- Inorganic scaling
 - Crystal growth or deposition
- Colloidal fouling
 - Deposition of small particles

S. Jiang et al. / Science of the Total Environment 595 (2017) 567-583

crystal growth

S. Lee et al. / Journal of Membrane Science 163 (1999) 63-74

Factors affect scaling

Concentration Polarization	Ionic Strength	Co- Precipitation
рН	Pressure	Velocity
Temperature	Surface Morphology	Surface Chemistry

Methodology

Graphene Oxide (GO)

Graphene oxide effect on scaling

Research Questions:

- How GO affect the scaling and membrane recovery?
- > What are the mechanism of the scaling?
- What type of scalant will form on the membrane coated with GO?

Methodology

Results

Coated membrane (ESPA2-GO) characterization

- Surface zeta potential
- > Water contact angle
- > SEM
- Salt rejection
- > Permeability

Methodology

Results

Conclusions

ESPA2-GO characterization: SEM

GO coating makes surface smoother

ESPA2-GO characterization

Coating effects:

- No changes in permeability and salt rejection
- ✓ Surface more negatively charged
- ✓ Surface more hydrophilic

Scaling tests

Scaling test: Flux decay

Test 1

GO repels negatively charged gypsum crystals thus decreases formation of a cake on the membrane surface

Test 2

Scaling test: Recovery Test 1

GO makes more stable crystals, due to heterogeneous nucleation (higher number of –COOH)

Characterization of the scales: SEM

Test 1

More nucleation sites on the ESPA2-GO cause smaller size crystals

PA Membrane VOL. 44, NO. 6, 2010 / ENVIRONMENTAL SCIENCE & TECHNOLOGY

Characterization of the scales: XRD

All the scales are in gypsum form

Conclusions

- ✓ GO coating doesn't have negative effect on permeability and salt rejection
- ✓ GO coating decreased scaling by repelling negatively charged gypsum, but decreased the flux recovery by making more stable crystals
- ✓ The size of the crystal decreased in ESPA2-GO due to increase in nucleation sites
- ✓ The scales only form in gypsum structure on both ESPA2 and ESPA2-GO

Acknowledgments

This presentation was made possible by NPRP grant # 9-318-1-064 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

Thank you